login
Number of nX4 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing
1

%I #4 Apr 03 2013 10:57:32

%S 46,698,5996,45453,345875,2717759,22071219,182843194,1528645389,

%T 12825738594,107715455487,904773390455,7599493889175,63827735783412,

%U 536075684379248,4502373101398007,37814478865105363,317596919801312214

%N Number of nX4 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing

%C Column 4 of A224310

%H R. H. Hardin, <a href="/A224306/b224306.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 15*a(n-1) -58*a(n-2) -13*a(n-3) +160*a(n-4) +1879*a(n-5) -7373*a(n-6) +6407*a(n-7) -2233*a(n-8) +11269*a(n-9) -128277*a(n-10) +514460*a(n-11) -559176*a(n-12) +774916*a(n-13) +91024*a(n-14) -426367*a(n-15) -1572540*a(n-16) -2736461*a(n-17) -3322156*a(n-18) -10388293*a(n-19) +187424*a(n-20) -4090338*a(n-21) +4202406*a(n-22) +9112758*a(n-23) +21520552*a(n-24) +26916252*a(n-25) +22991028*a(n-26) +42071688*a(n-27) +28540632*a(n-28) +18156960*a(n-29) +483840*a(n-30) for n>35

%e Some solutions for n=3

%e ..0..0..0..0....0..1..1..1....2..2..0..0....1..1..1..0....0..0..0..2

%e ..0..0..0..1....1..2..2..2....2..2..1..0....1..2..1..1....0..0..2..2

%e ..0..0..2..2....2..2..2..1....2..2..0..0....2..2..1..0....1..2..2..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 03 2013