|
|
A224303
|
|
Numbers n for which number of iterations to reach the largest equals number of iterations to reach 1 from the largest in Collatz (3x+1) trajectory of n.
|
|
2
|
|
|
1, 6, 120, 334, 335, 804, 1249, 2008, 2010, 2012, 2013, 6556, 6557, 6558, 6801, 6802, 6803, 7496, 7498, 7500, 7501, 7505, 10219, 22633, 25182, 25183, 27074, 27075, 27864, 27866, 27868, 31838, 31839, 32078, 36630, 36633, 36690, 36691, 36914, 39126, 39344
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
6 is in the list because Collatz trajectory of 6 is {6, 3, 10, 5, 16, 8, 4, 2, 1} and number of steps to reach largest = number of steps to reach 1 from largest = 4.
|
|
MATHEMATICA
|
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3*# + 1] &, n, # > 1 &]; Select[Range[50000], Position[Collatz[#], Max[Collatz[#]]] == {{(Length[Collatz[#]] + 1)/2}} &]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|