login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A224283
Number of 4Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing
1
256, 16000, 186516, 1334973, 8073038, 44901359, 233090092, 1121852243, 4979825221, 20391024279, 77331512406, 273217833082, 905042600151, 2828381836611, 8387049692461, 23720147714267, 64273739402314
OFFSET
1,1
COMMENTS
Row 4 of A224281
LINKS
FORMULA
Empirical: a(n) = (1/2906843957821440000)*n^24 + (1/80745665495040000)*n^23 + (46391/53523844179886080000)*n^22 + (11257/405483668029440000)*n^21 + (1330123/1390229718958080000)*n^20 + (8502743/347557429739520000)*n^19 + (35671/59779399680000)*n^18 + (133834769/10670622842880000)*n^17 + (7571063047/30128817438720000)*n^16 + (2965237343/836911595520000)*n^15 + (328422846067/15064408719360000)*n^14 + (22514281381/48910417920000)*n^13 + (7036550185081/2254537359360000)*n^12 - (105103493973601/2510734786560000)*n^11 + (1257210817095943/1076029194240000)*n^10 - (236735071681049/19615115520000)*n^9 + (3534310707922188979/32011868528640000)*n^8 - (767055210116438233/1143281018880000)*n^7 + (10350657608308971137/3103191336960000)*n^6 - (8154723578394294443/703964701440000)*n^5 + (16475873524529520931/527973526080000)*n^4 - (482012437494247/8888443200)*n^3 + (78892730856408401/873054262080)*n^2 - (77283877096589/243374040)*n + 643573 for n>7
EXAMPLE
Some solutions for n=3
..0..0..0....0..0..2....3..2..1....2..0..0....3..0..0....1..2..1....2..0..0
..0..0..1....2..2..2....3..2..1....3..2..0....1..3..2....3..2..1....1..1..0
..2..1..0....2..2..2....3..1..1....2..0..0....3..3..1....3..1..1....1..1..1
..1..0..0....3..2..2....1..2..1....2..1..0....3..3..0....1..3..1....1..2..1
CROSSREFS
Sequence in context: A017032 A136286 A269204 * A224206 A238064 A235964
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 02 2013
STATUS
approved