login
A224281
T(n,k)=Number of nXk 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing
12
4, 16, 16, 50, 160, 64, 130, 984, 1600, 256, 296, 4580, 13683, 16000, 1024, 610, 17723, 84132, 186516, 160000, 4096, 1163, 59792, 442089, 1334973, 2596992, 1600000, 16384, 2083, 180821, 2059793, 8073038, 21348990, 37128051, 16000000, 65536, 3544
OFFSET
1,1
COMMENTS
Table starts
.......4..........16............50............130.............296
......16.........160...........984...........4580...........17723
......64........1600.........13683..........84132..........442089
.....256.......16000........186516........1334973.........8073038
....1024......160000.......2596992.......21348990.......137489538
....4096.....1600000......37128051......356222482......2425304290
...16384....16000000.....537465766.....6172817040.....45275725025
...65536...160000000....7804602744...109166159263....883012703273
..262144..1600000000..113382138975..1947747629183..17667432461262
.1048576.16000000000.1646661944858.34864494529806.358042017265316
LINKS
FORMULA
Empirical: columns k=1..4 have recurrences of order 1,1,25,52 for n>0,0,26,59
Empirical: rows n=1..6 are polynomials of degree 6*n for k>0,0,3,7,11,15
EXAMPLE
Some solutions for n=3 k=4
..0..2..2..1....3..0..0..0....0..0..3..2....3..2..1..1....0..1..1..1
..2..2..2..0....1..2..3..0....3..3..2..0....3..2..2..2....1..2..3..0
..3..2..2..1....3..3..2..2....3..3..3..2....2..3..2..2....3..3..0..0
CROSSREFS
Column 1 is A000302
Column 2 is 16*10^(n-1)
Row 1 is A223659
Row 2 is A224058
Sequence in context: A203252 A224064 A224050 * A224204 A238287 A223811
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 02 2013
STATUS
approved