|
|
A224282
|
|
Number of 3Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing
|
|
1
|
|
|
64, 1600, 13683, 84132, 442089, 2059793, 8626382, 32788075, 114177368, 367630559, 1103854119, 3114501259, 8312578140, 21108455323, 51251494995, 119493052710, 268514504126, 583406544627, 1229033304669, 2516545359868, 5019124209561
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/3629463552000)*n^18 + (1/80654745600)*n^17 + (1123/2092278988800)*n^16 + (37607/2615348736000)*n^15 + (1660537/5230697472000)*n^14 + (58097/11496038400)*n^13 + (870097/11496038400)*n^12 + (18766109/28740096000)*n^11 + (404719067/73156608000)*n^10 + (535345591/14631321600)*n^9 + (24473380931/160944537600)*n^8 + (549661909/449064000)*n^7 + (1232106541/768768000)*n^6 + (74468938879/3736212480)*n^5 + (59979142753/8717829120)*n^4 + (521837272841/9081072000)*n^3 + (1774626948209/5145940800)*n^2 - (140683661/117810)*n + 1114 for n>3
|
|
EXAMPLE
|
Some solutions for n=3
..0..0..0....2..3..1....0..3..1....1..0..0....0..3..0....0..0..0....0..0..0
..2..0..0....3..1..0....3..2..1....3..3..2....3..2..1....1..1..2....0..3..2
..0..0..2....2..2..1....2..1..1....3..2..0....3..3..3....3..2..2....3..3..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|