login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224109 Numerators of poly-Cauchy numbers of the second kind hat c_n^(5). 2
1, -1, 275, -6289, 92902541, -154473289, 13399738273333, -377635608584803, 822223497000264427, -1492945924219675973, 1323386773861946436609781, -2448418399924413951578983, 177825546947844845937070681472647 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..260

Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)

Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.

Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.

T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.

Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016

MATHEMATICA

Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]

PROG

(PARI) a(n) = numerator(sum(k=0, n, (-1)^k*stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015

CROSSREFS

Cf. A002657, A223904, A224107, A224102, A224104, A224106, A224107 (denominators).

Sequence in context: A257123 A130292 A133536 * A075666 A121743 A084802

Adjacent sequences:  A224106 A224107 A224108 * A224110 A224111 A224112

KEYWORD

sign,frac

AUTHOR

Takao Komatsu, Mar 31 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 16:05 EDT 2022. Contains 356229 sequences. (Running on oeis4.)