The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223904 Poly-Cauchy numbers of the second kind hat c_n^(-5). 4
 1, -32, 275, -1817, 12134, -87784, 699894, -6158058, 59566464, -630057696, 7246806720, -90151868160, 1207028135520, -17314992935040, 265048030579680, -4313510679824160, 74387763047472000, -1355291635314213120, 26016022725597866880, -524865277479851360640, 11103724030717930095360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371. Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53. Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153. MATHEMATICA Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^5, {k, 0, n}], {n, 0, 30}] PROG (Magma) [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^5: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013 (PARI) a(n) = sum(k=0, n, (-1)^k*stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015 CROSSREFS Cf. A223023. Sequence in context: A126527 A265842 A248884 * A122103 A009526 A304345 Adjacent sequences: A223901 A223902 A223903 * A223905 A223906 A223907 KEYWORD sign AUTHOR Takao Komatsu, Mar 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 3 17:31 EDT 2023. Contains 363116 sequences. (Running on oeis4.)