login
A224012
T(n,k)=Number of nXk 0..2 arrays with rows nondecreasing and antidiagonals unimodal
12
3, 6, 9, 10, 36, 27, 15, 100, 216, 81, 21, 225, 868, 1296, 243, 28, 441, 2661, 7378, 7776, 729, 36, 784, 6815, 28541, 62764, 46656, 2187, 45, 1296, 15340, 90051, 297859, 534352, 279936, 6561, 55, 2025, 31324, 245055, 1108969, 3094127, 4549684, 1679616
OFFSET
1,1
COMMENTS
Table starts
.....3........6.........10..........15...........21............28............36
.....9.......36........100.........225..........441...........784..........1296
....27......216........868........2661.........6815.........15340.........31324
....81.....1296.......7378.......28541........90051........245055........595822
...243.....7776......62764......297859......1108969.......3516324.......9866389
...729....46656.....534352.....3094127.....13275381......47735665.....150787422
..2187...279936....4549684....32148473....157347899.....630339756....2200064042
..6561..1679616...38737252...334179881...1859567103....8213689391...31256208954
.19683.10077696..329817976..3474343713..21962353421..106375878027..437370837827
.59049.60466176.2808146488.36122604265.259365424097.1373916879120.6067995150599
LINKS
FORMULA
Empirical: columns k=1..7 have recurrences of order 1,1,5,7,11,14,19
Empirical: rows n=1..7 are polynomials of degree 2*n for k>0,0,1,2,3,4,5
EXAMPLE
Some solutions for n=3 k=4
..1..1..2..2....0..1..1..1....0..0..0..0....0..0..0..1....0..2..2..2
..0..2..2..2....0..1..1..1....0..1..2..2....2..2..2..2....0..0..1..1
..1..1..2..2....0..2..2..2....1..2..2..2....2..2..2..2....0..0..2..2
CROSSREFS
Column 1 is A000244
Column 2 is A000400
Row 1 is A000217(n+1)
Row 2 is A000537(n+1)
Sequence in context: A223999 A107084 A224353 * A340491 A329511 A065940
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 30 2013
STATUS
approved