login
A223999
T(n,k)=Number of nXk 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing
13
3, 6, 9, 10, 31, 27, 15, 76, 157, 81, 21, 155, 476, 793, 243, 28, 281, 1144, 2980, 4004, 729, 36, 469, 2403, 7927, 18672, 20216, 2187, 45, 736, 4614, 17929, 55333, 117386, 102069, 6561, 55, 1101, 8291, 36845, 132119, 388598, 739672, 515338, 19683, 66
OFFSET
1,1
COMMENTS
Table starts
.....3........6........10........15.........21.........28..........36
.....9.......31........76.......155........281........469.........736
....27......157.......476......1144.......2403.......4614........8291
....81......793......2980......7927......17929......36845.......71061
...243.....4004.....18672.....55333.....132119.....281271......559188
...729....20216....117386....388598.....984595....2160036.....4368458
..2187...102069....739672...2743444....7400832...16795265....34534687
..6561...515338...4664776..19437479...55978489..131782267...276286000
.19683..2601899..29428242.138010718..425257387.1040869367..2229871293
.59049.13136773.185670484.981047716.3240026429.8260503068.18115082917
LINKS
FORMULA
Empirical: columns k=1..7 have recurrences of order 1,3,9,18,28,39,54 for n>0,0,0,19,31,44,61
Empirical: rows n=1..7 are polynomials of degree 2*n for k>0,0,2,4,6,8,10
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1....1..1..2..2....0..0..0..0....2..2..2..2....0..0..0..0
..0..1..2..2....0..1..1..2....0..0..2..2....0..2..2..2....0..0..2..2
..2..2..2..2....0..0..1..2....0..0..1..2....2..2..2..2....2..2..2..2
CROSSREFS
Column 1 is A000244
Column 2 is A038223
Row 1 is A000217(n+1)
Sequence in context: A310141 A348550 A331841 * A107084 A224353 A224012
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 30 2013
STATUS
approved