login
A223940
Sums of antidiagonals of A223968.
2
1, 2, 4, 8, 16, 31, 61, 117, 228, 436, 845, 1615, 3120, 5965, 11501, 22001, 42365, 81091, 156010, 298777, 574450, 1100620, 2115150, 4053959, 7788126, 14931102, 28676899, 54990202, 105594073, 202519004, 388825095, 745825185, 1431776536, 2746639052
OFFSET
0,2
FORMULA
G.f.: (1-x) * (1+2*x-x^3) / (1-x-4*x^2+3*x^3+3*x^4-x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) with a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16, a(5) = 31.
a(n) = Sum_{k=0..n} A223968(n-k, k).
MATHEMATICA
CoefficientList[Series[(1-x)(1+2x-x^3)/(1-x-4x^2+3x^3+3x^4-x^5), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 4, -3, -3, 1}, {1, 2, 4, 8, 16}, 40] (* Harvey P. Dale, Jul 04 2019 *)
CROSSREFS
Sequence in context: A347776 A006775 A104993 * A189076 A192656 A128761
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 29 2013
EXTENSIONS
a(32) corrected by Sean A. Irvine, May 19 2019
STATUS
approved