login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104993
Molien series for a certain 16-dimensional group of order 20160.
0
1, 2, 4, 8, 16, 31, 61, 117, 224, 424, 796, 1476, 2717, 4938, 8876, 15756, 27616, 47764, 81542, 137356, 228363, 374755, 607213, 971675, 1536235, 2400465, 3708625, 5667325, 8569742, 12827751, 19015101, 27923781, 40638610, 58633470, 83896398, 119089492
OFFSET
0,2
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
PROG
(Magma) K:=Rationals(); M:=MatrixAlgebra(K, 4); q1:=DiagonalMatrix(M, [1, -1, 1, -1]); p1:=DiagonalMatrix(M, [1, 1, -1, -1]); q2:=DiagonalMatrix(M, [1, 1, 1, -1]); h:=M![1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1]/2; H:=MatrixGroup<4, K|q1, q2, h, p1>;
permstomats:=function(L); n:=#L[1]; M:=MatrixAlgebra(Rationals(), n); a:=#L; MM:=[]; for i in [1..a] do Append(~MM, M ! 0); end for; for i in [1..a] do for j in [1..n] do MM[i][j][L[i][j]]:=1; end for; end for; return MM; end function;
MM:=MatrixAlgebra(K, 16); hh:=TensorProduct(M ! 1, h); qq1:=TensorProduct(M ! 1, q1); pp1:=TensorProduct(M ! 1, p1); qq2:=TensorProduct(M ! 1, q2);
perm:=sub<Sym(16) | (3, 5)*(4, 6)*(11, 13)*(12, 14), (3, 7)*(4, 8)*(11, 15)*(12, 16), (2, 10)*(4, 12)*(6, 14)*(8, 16), (2, 9)*(4, 11)*(6, 13)*(8, 15)>; Order(perm);
pp:=Setseq(Generators(perm)); L:=[Eltseq(pp[1]), Eltseq(pp[2]), Eltseq(pp[3]), Eltseq(pp[4])]; ML:=permstomats(L); UU:=MatrixGroup<16, K | hh, qq2, ML[1], ML[2], ML[3], ML[4]>; Order(UU); MUU:=MolienSeries(UU);
CROSSREFS
Sequence in context: A152718 A347776 A006775 * A223940 A189076 A192656
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and Gabriele Nebe, Apr 26 2005
STATUS
approved