login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Molien series for a certain 16-dimensional group of order 20160.
0

%I #11 Sep 08 2022 08:45:17

%S 1,2,4,8,16,31,61,117,224,424,796,1476,2717,4938,8876,15756,27616,

%T 47764,81542,137356,228363,374755,607213,971675,1536235,2400465,

%U 3708625,5667325,8569742,12827751,19015101,27923781,40638610,58633470,83896398,119089492

%N Molien series for a certain 16-dimensional group of order 20160.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%o (Magma) K:=Rationals(); M:=MatrixAlgebra(K,4); q1:=DiagonalMatrix(M,[1,-1,1,-1]); p1:=DiagonalMatrix(M,[1,1,-1,-1]); q2:=DiagonalMatrix(M,[1,1,1,-1]); h:=M![1,1,1,1, 1,1,-1,-1, 1,-1,1,-1, 1,-1,-1,1]/2; H:=MatrixGroup<4,K|q1,q2,h,p1>;

%o permstomats:=function(L); n:=#L[1]; M:=MatrixAlgebra(Rationals(),n); a:=#L; MM:=[]; for i in [1..a] do Append(~MM,M ! 0); end for; for i in [1..a] do for j in [1..n] do MM[i][j][L[i][j]]:=1; end for; end for; return MM; end function;

%o MM:=MatrixAlgebra(K,16); hh:=TensorProduct(M ! 1,h); qq1:=TensorProduct(M ! 1,q1); pp1:=TensorProduct(M ! 1,p1); qq2:=TensorProduct(M ! 1,q2);

%o perm:=sub<Sym(16) | (3,5)*(4,6)*(11,13)*(12,14), (3,7)*(4,8)*(11,15)*(12,16), (2,10)*(4,12)*(6,14)*(8,16),(2,9)*(4,11)*(6,13)*(8,15)>; Order(perm);

%o pp:=Setseq(Generators(perm)); L:=[Eltseq(pp[1]),Eltseq(pp[2]),Eltseq(pp[3]),Eltseq(pp[4])]; ML:=permstomats(L); UU:=MatrixGroup<16,K | hh,qq2,ML[1],ML[2],ML[3],ML[4]>; Order(UU); MUU:=MolienSeries(UU);

%K nonn

%O 0,2

%A _N. J. A. Sloane_ and Gabriele Nebe, Apr 26 2005