|
|
A223931
|
|
Number of nX6 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing
|
|
1
|
|
|
148, 4690, 49646, 316136, 1548633, 6621074, 26250443, 98910688, 356869229, 1233491661, 4078987936, 12893958739, 38971222534, 112766372283, 313016886779, 835552379045, 2150549167905, 5351315229801, 12907390753903, 30251757926890
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/35608838483312640000)*n^24 - (1/989134402314240000)*n^23 + (1/12843374100480000)*n^22 - (6449/4257578514309120000)*n^21 + (21257/304112751022080000)*n^20 - (829363/1216451004088320000)*n^19 + (40421209/896332318801920000)*n^18 - (9123221/16598746644480000)*n^17 + (633266813/17575143505920000)*n^16 - (337664083/599152619520000)*n^15 + (2727091523/144850083840000)*n^14 - (437501744297/941525544960000)*n^13 + (331492439551297/26362715258880000)*n^12 - (779880875442583/2929190584320000)*n^11 + (6466629168070943/1351934115840000)*n^10 - (1887207111269150711/26362715258880000)*n^9 + (1852948610513538961/2000741783040000)*n^8 - (82282526794806272279/8002967132160000)*n^7 + (671840992562382243287/6956827637760000)*n^6 - (3984160216854431049887/5375730447360000)*n^5 + (4404199128820894274957/985550582016000)*n^4 - (7353970133174044661/365018734080)*n^3 + (398286504848891623/6290282880)*n^2 - (651587469103938359/5354228880)*n + 102401506 for n>12
|
|
EXAMPLE
|
Some solutions for n=3
..0..0..0..0..0..0....0..2..1..1..1..0....0..0..0..0..0..0....0..0..2..0..0..0
..0..1..1..0..0..0....0..2..2..2..2..2....0..1..1..1..1..1....0..1..2..2..0..0
..0..1..1..1..2..2....0..0..2..2..2..2....0..2..2..1..1..1....0..1..1..2..2..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|