login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX6 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing
1

%I #4 Mar 29 2013 07:51:22

%S 148,4690,49646,316136,1548633,6621074,26250443,98910688,356869229,

%T 1233491661,4078987936,12893958739,38971222534,112766372283,

%U 313016886779,835552379045,2150549167905,5351315229801,12907390753903,30251757926890

%N Number of nX6 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing

%C Column 6 of A223933

%H R. H. Hardin, <a href="/A223931/b223931.txt">Table of n, a(n) for n = 1..141</a>

%F Empirical: a(n) = (1/35608838483312640000)*n^24 - (1/989134402314240000)*n^23 + (1/12843374100480000)*n^22 - (6449/4257578514309120000)*n^21 + (21257/304112751022080000)*n^20 - (829363/1216451004088320000)*n^19 + (40421209/896332318801920000)*n^18 - (9123221/16598746644480000)*n^17 + (633266813/17575143505920000)*n^16 - (337664083/599152619520000)*n^15 + (2727091523/144850083840000)*n^14 - (437501744297/941525544960000)*n^13 + (331492439551297/26362715258880000)*n^12 - (779880875442583/2929190584320000)*n^11 + (6466629168070943/1351934115840000)*n^10 - (1887207111269150711/26362715258880000)*n^9 + (1852948610513538961/2000741783040000)*n^8 - (82282526794806272279/8002967132160000)*n^7 + (671840992562382243287/6956827637760000)*n^6 - (3984160216854431049887/5375730447360000)*n^5 + (4404199128820894274957/985550582016000)*n^4 - (7353970133174044661/365018734080)*n^3 + (398286504848891623/6290282880)*n^2 - (651587469103938359/5354228880)*n + 102401506 for n>12

%e Some solutions for n=3

%e ..0..0..0..0..0..0....0..2..1..1..1..0....0..0..0..0..0..0....0..0..2..0..0..0

%e ..0..1..1..0..0..0....0..2..2..2..2..2....0..1..1..1..1..1....0..1..2..2..0..0

%e ..0..1..1..1..2..2....0..0..2..2..2..2....0..2..2..1..1..1....0..1..1..2..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 29 2013