|
|
A223930
|
|
Number of nX5 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing
|
|
1
|
|
|
86, 1915, 15791, 86439, 386495, 1548633, 5773556, 20277077, 67308910, 211460339, 629882429, 1783655626, 4817110825, 12451066977, 30910052731, 73949198559, 171030335166, 383497912713, 835834876572, 1774757616717, 3678712344867
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/1379196149760000)*n^20 - (1/137919614976000)*n^19 + (331/304874938368000)*n^18 - (23/25406244864000)*n^17 + (22273/34871316480000)*n^16 + (2693/697426329600)*n^15 + (709123/2324754432000)*n^14 + (25469/53374464000)*n^13 + (818015239/6897623040000)*n^12 - (447002537/229920768000)*n^11 + (49691417869/1072963584000)*n^10 - (162095712841/268240896000)*n^9 + (48214267849049/6538371840000)*n^8 - (12967593924557/186810624000)*n^7 + (659685543839627/1120863744000)*n^6 - (379579885964341/93405312000)*n^5 + (71087813774265133/3087564480000)*n^4 - (15162068319635473/154378224000)*n^3 + (1768745631701119/6110804700)*n^2 - (6674903392214/14549535)*n + 130847 for n>9
|
|
EXAMPLE
|
Some solutions for n=3
..0..1..1..1..2....0..1..0..0..0....0..2..2..2..2....0..1..1..1..0
..1..1..1..1..1....1..2..2..1..1....0..1..2..2..2....1..1..1..1..1
..1..1..1..2..1....2..2..2..2..2....0..0..2..2..2....1..1..1..1..2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|