This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223906 Poly-Cauchy numbers of the second kind -hat c_3^(-n). 1
 17, 51, 161, 531, 1817, 6411, 23201, 85731, 322217, 1227771, 4729841, 18379731, 71908217, 282817131, 1116854081, 4424238531, 17567551817, 69882262491, 278365739921, 1109974078131, 4429431765017, 17686337611851, 70651190491361, 282322298874531 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the ﬁrst kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371. Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53. Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153. FORMULA Conjecture: a(n) = 2^(1+n)+3^(1+n)+4^n. G.f.: -x*(144*x^2-102*x+17) / ((2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Mar 31 2013 MATHEMATICA Table[-Sum[StirlingS1[3, k] (-1)^k (k + 1)^n, {k, 0, 3}], {n, 30}] PROG (PARI) a(n) = -sum(k=0, 3, (-1)^k*stirling(3, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015 CROSSREFS Cf. A223173. Sequence in context: A195037 A214660 A258598 * A146673 A078757 A041560 Adjacent sequences:  A223903 A223904 A223905 * A223907 A223908 A223909 KEYWORD nonn,easy AUTHOR Takao Komatsu, Mar 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 08:51 EDT 2019. Contains 327091 sequences. (Running on oeis4.)