login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223906
Poly-Cauchy numbers of the second kind -hat c_3^(-n).
1
17, 51, 161, 531, 1817, 6411, 23201, 85731, 322217, 1227771, 4729841, 18379731, 71908217, 282817131, 1116854081, 4424238531, 17567551817, 69882262491, 278365739921, 1109974078131, 4429431765017, 17686337611851, 70651190491361, 282322298874531
OFFSET
1,1
COMMENTS
The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).
LINKS
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
FORMULA
Conjecture: a(n) = 2^(1+n)+3^(1+n)+4^n. G.f.: -x*(144*x^2-102*x+17) / ((2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Mar 31 2013
MATHEMATICA
Table[-Sum[StirlingS1[3, k] (-1)^k (k + 1)^n, {k, 0, 3}], {n, 30}]
PROG
(PARI) a(n) = -sum(k=0, 3, (-1)^k*stirling(3, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015
CROSSREFS
Cf. A223173.
Sequence in context: A195037 A214660 A258598 * A146673 A330390 A078757
KEYWORD
nonn,easy
AUTHOR
Takao Komatsu, Mar 29 2013
STATUS
approved