|
|
A223905
|
|
Number of 4-vexillary permutations in S_n, that is, permutations whose Stanley symmetric function has at most 4 terms or at most 4 Edelman-Greene tableaux.
|
|
4
|
|
|
1, 1, 2, 6, 24, 120, 717, 4824, 34629, 256689, 1935301
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
This family is characterized by a finite set of patterns.
|
|
LINKS
|
Table of n, a(n) for n=0..10.
S. Billey and B. Pawlowski, Permutation Patterns, Stanley symmetric functions and generalized Specht modules, arXiv:1304.7870 [math.CO], 2013.
Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
|
|
CROSSREFS
|
Cf. A005802, A224318.
Sequence in context: A121987 A324132 A177524 * A164872 A226437 A224287
Adjacent sequences: A223902 A223903 A223904 * A223906 A223907 A223908
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Sara Billey, Apr 04 2013
|
|
EXTENSIONS
|
a(0)=1 prepended by Alois P. Heinz, Jul 31 2019
|
|
STATUS
|
approved
|
|
|
|