login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A223876
T(n,k)=Number of nXk 0..3 arrays with rows, diagonals and antidiagonals unimodal
10
4, 16, 16, 50, 256, 64, 130, 2500, 4096, 256, 296, 16900, 99223, 65536, 1024, 610, 87616, 1336985, 3863372, 1048576, 4096, 1163, 372100, 12520369, 88682677, 152918517, 16777216, 16384, 2083, 1352569, 90648289, 1271992512, 5941888105
OFFSET
1,1
COMMENTS
Table starts
.......4............16................50..................130
......16...........256..............2500................16900
......64..........4096.............99223..............1336985
.....256.........65536...........3863372.............88682677
....1024.......1048576.........152918517...........5941888105
....4096......16777216........6066668157.........411716468431
...16384.....268435456......240345697904.......28928809433978
...65536....4294967296.....9519219712534.....2033941972287214
..262144...68719476736...377068749332794...142745781634483746
.1048576.1099511627776.14936662560715369.10010372252279889400
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 16*a(n-1)
k=3: [recurrence of order 28]
Empirical: rows n=1..4 are polynomials of degree 6*n for k>0,0,1,10
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1....0..0..0..3....0..2..3..3....0..0..0..2....0..0..0..0
..2..2..2..3....2..2..3..3....2..2..3..1....0..2..2..2....0..0..0..3
..2..3..1..1....0..1..2..3....1..1..3..1....2..2..2..1....1..1..3..1
CROSSREFS
Column 1 is A000302
Column 2 is A001025
Row 1 is A223659
Row 2 is A223756
Sequence in context: A223850 A223663 A224113 * A223801 A336938 A232516
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 28 2013
STATUS
approved