login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223801
T(n,k)=Number of nXk 0..3 arrays with rows and antidiagonals unimodal
12
4, 16, 16, 50, 256, 64, 130, 2500, 4096, 256, 296, 16900, 110116, 65536, 1024, 610, 87616, 1658703, 4816168, 1048576, 4096, 1163, 372100, 16979881, 151310069, 210163664, 16777216, 16384, 2083, 1352569, 131295500, 2844578252, 13602542576
OFFSET
1,1
COMMENTS
Table starts
.......4............16................50..................130
......16...........256..............2500................16900
......64..........4096............110116..............1658703
.....256.........65536...........4816168............151310069
....1024.......1048576.........210163664..........13602542576
....4096......16777216........9169032476........1216562667529
...16384.....268435456......400006582368......108631485025292
...65536....4294967296....17450517286804.....9695922803812530
..262144...68719476736...761287955888788...865293308203272685
.1048576.1099511627776.33211580867804324.77218182866179219113
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 16*a(n-1)
k=3: [order 10]
k=4: [order 27]
Empirical: rows n=1..6 are polynomials of degree 6*n for k>0,0,0,0,2,3
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..3....0..0..1..1....0..2..3..3....0..2..3..1....0..2..1..1
..1..2..2..3....0..2..3..3....2..2..2..0....0..0..0..0....2..2..2..3
..1..1..3..2....0..1..1..2....2..1..0..0....0..0..2..3....2..2..1..0
CROSSREFS
Column 1 is A000302
Column 2 is A001025
Row 1 is A223659
Row 2 is A223756
Sequence in context: A223663 A224113 A223876 * A336938 A232516 A220109
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 27 2013
STATUS
approved