login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222964
Numbers k such that 25*k+36 is a square.
1
0, 13, 37, 76, 124, 189, 261, 352, 448, 565, 685, 828, 972, 1141, 1309, 1504, 1696, 1917, 2133, 2380, 2620, 2893, 3157, 3456, 3744, 4069, 4381, 4732, 5068, 5445, 5805, 6208, 6592, 7021, 7429, 7884, 8316, 8797, 9253, 9760, 10240, 10773, 11277, 11836, 12364, 12949, 13501, 14112, 14688
OFFSET
1,2
COMMENTS
Also, numbers of the form 25m^2+12*m, where m = 0,-1,1,-2,2,-3,3,... - Bruno Berselli, Apr 07 2013
FORMULA
G.f.: x^2*(13+24*x+13*x^2)/((1+x)^2*(1-x)^3).
a(n) = (50*n*(n-1)+(2*n-1)*(-1)^n+1)/8.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
Sum_{n>=2} 1/a(n) = 25/144 - tan(Pi/50)*Pi/12. - Amiram Eldar, Feb 16 2023
MATHEMATICA
Select[Range[0, 10000], IntegerQ[Sqrt[25 # + 36]]&] (* or *) CoefficientList[Series[x (13 + 24 x + 13 x^2)/((1+x)^2(1-x)^3), {x, 0, 40}], x]
PROG
(Magma) [n: n in [0..15000] | IsSquare(25*n+36)];
(Magma) I:=[0, 13, 37, 76, 124]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]];
(Magma) [0] cat [25*m^2+12*m where m is n*t: t in [-1, 1], n in [1..20]]; // Bruno Berselli, Apr 07 2013
CROSSREFS
Cf. numbers n such that k^2*n+(k+1)^2 is a square: A028552 (k=2), A218864 (k=3), A165717 (k=4).
Cf. numbers of the form k^2*m^2+floor(k^2/2)*m, where m=0,-1,1,-2,2,-3,3,...: A002378 (k=2), A185039 (k=3), A033996 (k=4), this sequence (k=5), A163758 (k=6).
Sequence in context: A155265 A155253 A155234 * A296312 A089114 A163675
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 07 2013
STATUS
approved