login
A022246
Gaussian binomial coefficients [ n,6 ] for q = 8.
1
1, 299593, 79783113865, 20955593338439305, 5494724540479236953737, 1440453028909548546592331401, 377607559263493603746446715115145, 98987603216356624971042374274625033865, 25949007804224083420097621839124559742097033
OFFSET
6,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..6} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 05 2016
MATHEMATICA
Table[QBinomial[n, 6, 8], {n, 6, 20}] (* Vincenzo Librandi, Aug 05 2016 *)
PROG
(Sage) [gaussian_binomial(n, 6, 8) for n in range(6, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=6; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 05 2016
CROSSREFS
Sequence in context: A254193 A254186 A253798 * A227700 A050257 A283209
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 05 2016
STATUS
approved