login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222013
G.f. satisfies: A(x) = Sum_{n>=0} n! * x^n * A(x)^(n*(n+1)/2) / Product_{k=1..n} (1 + k*x*A(x)^k).
2
1, 1, 2, 7, 32, 172, 1038, 6865, 49098, 376942, 3094812, 27129690, 253821716, 2534600760, 27012498668, 307083883519, 3719224056464, 47898505899624, 654343988611350, 9455986402701388, 144138413744793426, 2311030293590097634, 38871924229882607774
OFFSET
0,3
COMMENTS
Compare the g.f. to the identities:
(1) 1/(1-x) = Sum_{n>=0} n!*x^n / Product_{k=1..n} (1 + k*x).
(2) C(x) = Sum_{n>=0} n!*x^n*C(x)^n / Product_{k=1..n} (1 + k*x*C(x)), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Conjecture: a(n) is odd iff n = 2^k - 1 for some k >= 0. - Paul D. Hanna, Dec 06 2024
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 32*x^4 + 172*x^5 + 1038*x^6 +...
where
A(x) = 1 + x*A(x)/(1+x*A(x)) + 2!*x^2*A(x)^3/((1+x*A(x))*(1+2*x*A(x)^2)) + 3!*x^3*A(x)^6/((1+x*A(x))*(1+2*x*A(x)^2)*(1+3*x*A(x)^3)) + 4!*x^4*A(x)^10/((1+x*A(x))*(1+2*x*A(x)^2)*(1+3*x*A(x)^3)*(1+4*x*A(x)^4)) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, m!*x^m*A^(m*(m+1)/2)/prod(k=1, m, 1+k*x*(A+x*O(x^n))^k))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A107593 A125277 A321688 * A179488 A191809 A161392
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2013
STATUS
approved