Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 06 2024 08:47:26
%S 1,1,2,7,32,172,1038,6865,49098,376942,3094812,27129690,253821716,
%T 2534600760,27012498668,307083883519,3719224056464,47898505899624,
%U 654343988611350,9455986402701388,144138413744793426,2311030293590097634,38871924229882607774
%N G.f. satisfies: A(x) = Sum_{n>=0} n! * x^n * A(x)^(n*(n+1)/2) / Product_{k=1..n} (1 + k*x*A(x)^k).
%C Compare the g.f. to the identities:
%C (1) 1/(1-x) = Sum_{n>=0} n!*x^n / Product_{k=1..n} (1 + k*x).
%C (2) C(x) = Sum_{n>=0} n!*x^n*C(x)^n / Product_{k=1..n} (1 + k*x*C(x)), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
%C Conjecture: a(n) is odd iff n = 2^k - 1 for some k >= 0. - _Paul D. Hanna_, Dec 06 2024
%H Paul D. Hanna, <a href="/A222013/b222013.txt">Table of n, a(n) for n = 0..160</a>
%e G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 32*x^4 + 172*x^5 + 1038*x^6 +...
%e where
%e A(x) = 1 + x*A(x)/(1+x*A(x)) + 2!*x^2*A(x)^3/((1+x*A(x))*(1+2*x*A(x)^2)) + 3!*x^3*A(x)^6/((1+x*A(x))*(1+2*x*A(x)^2)*(1+3*x*A(x)^3)) + 4!*x^4*A(x)^10/((1+x*A(x))*(1+2*x*A(x)^2)*(1+3*x*A(x)^3)*(1+4*x*A(x)^4)) +...
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, m!*x^m*A^(m*(m+1)/2)/prod(k=1, m, 1+k*x*(A+x*O(x^n))^k))); polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A222014, A221586.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 04 2013