login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221468
The Collatz (3x+1) iteration in A220145 converted to decimal.
2
1, 2, 133, 4, 33, 266, 67733, 8, 541865, 66, 16933, 532, 529, 135466, 135253, 16, 4233, 1083730, 1083717, 132, 129, 33866, 33813, 1064, 8669737, 1058, 2678946987458595510314019806849701, 270932, 270929, 270506, 83717093358081109697313118964053, 32, 69357897
OFFSET
1,2
COMMENTS
Sequence A005186 tells how many of these numbers are in [2^n, 2^(n+1)-1].
From Rémy Sigrist, Aug 19 2017: (Start)
a(2^n) = 2^n for any n >= 0.
A000120(a(n)) - 1 = A006667(n) for any n > 0.
A070939(a(n)) - 1 = A006577(n) for any n > 0.
All terms are Fibbinary numbers (A003714).
(End)
MATHEMATICA
Table[FromDigits[#, 2] &@ Boole@ OddQ@ Reverse@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # > 1 &], {n, 33}] (* Michael De Vlieger, Aug 19 2017 *)
PROG
(PARI) a(n) = my (v=0, p=1); while (n>1, if (n%2, n = 3*n+1; v += p, n = n/2); p *= 2); return (p+v) \\ Rémy Sigrist, Aug 19 2017
KEYWORD
nonn,base,look
AUTHOR
T. D. Noe, Jan 17 2013
STATUS
approved