login
A221471
Integers n such that n^2 is the difference of two Lucas numbers (A000032).
3
0, 1, 2, 3, 4, 5, 6, 11, 14, 29, 57, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371
OFFSET
1,3
COMMENTS
This sequence, growing exponentially, is interesting because the corresponding sequence for Fibonacci numbers (A219114) appears to be finite. However, except the 7 numbers in A221472, it appears that the squares of all these numbers have the form 0, L(5) - L(0), or L(4n+2) - L(0), where L(n) denotes the n-th Lucas number.
FORMULA
Conjecture: a(n) = 3*a(n-1)-a(n-2) = A002878(n-8) for n>13. G.f.: x^2*(28*x^11-66*x^10-16*x^9-2*x^8-13*x^7-2*x^6-5*x^5-4*x^4-3*x^3-2*x^2-x+1) / (x^2-3*x+1). [Colin Barker, Feb 17 2013]
MATHEMATICA
t = Union[Flatten[Abs[Table[LucasL[n] - LucasL[i], {n, 0, 120}, {i, n}]]]]; t2 = Select[t, IntegerQ[Sqrt[#]] &]; Sqrt[t2]
CROSSREFS
Cf. A000032 (Lucas numbers), A113191 (difference of two Lucas numbers).
Cf. A219114 (corresponding sequence for Fibonacci numbers).
Sequence in context: A088411 A075073 A157420 * A058243 A264665 A308776
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 13 2013
STATUS
approved