login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214436
The number of up-up-down permutations of Z(4n-1).
0
2, 132, 84512, 223951392, 1685183094272, 28969792974769152, 987034310041026732032, 60293392724182748896038912, 6128851480537130997344765345792, 978655905392130555745715195271708672, 234471526233667759898500618954899615383552, 81191298195592060653451439857277800300708626432
OFFSET
1,1
COMMENTS
The equation in Theorem 3.2 of the paper contains a typographical index error: The correct denominator in the e.g.f. is phi_0(x)^2-phi_1(x)*phi_3(x), equivalent to eq. (3.14).
LINKS
L. Carlitz and Richard Scoville, Enumeration of rises and falls by position, Discr. Math. 5 (1973) 45-59, variable B(4n-1).
MAPLE
Ph := proc(i, x)
local n;
add( x^(4*n+i)/(4*n+i)!, n=0..90) ;
end proc:
g := (Ph(1, x)*Ph(2, x)-Ph(0, x)*Ph(3, x) ) / (Ph(0, x)^2-Ph(1, x)*Ph(3, x)) ;
for n from 3 to 29 by 4 do
coeftayl(g, x=0, n)*n! ;
end do;
MATHEMATICA
Ph[i_, x_] = Sum[x^(4*n + i)/(4*n + i)!, {n, 0, Infinity}];
g = (Ph[1, x]*Ph[2, x]-Ph[0, x]*Ph[3, x]) / (Ph[0, x]^2-Ph[1, x]*Ph[3, x]);
a[n_] := SeriesCoefficient[g, {x, 0, 4 n - 1}]*(4 n - 1)!;
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, May 28 2024, after R. J. Mathar *)
CROSSREFS
Sequence in context: A174585 A186194 A099682 * A135759 A014315 A221468
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 17 2012
STATUS
approved