login
A214435
Triangle read by rows: T(n,k) = n!*S(n,k), where S(n,k) is the matrix inverse of the triangle zeta(k-n,1) - zeta(k-n,k+1), n>=1, k>=1.
0
1, -1, 1, 1, -3, 2, 3, 3, -12, 6, -2, 30, 8, -60, 24, -240, 240, 240, 0, -360, 120, -3900, -540, 4800, 1800, -360, -2520, 720, -15120, -112560, 65520, 70560, 12600, -5880, -20160, 5040, 2169888, -4284000, -756672, 2076480, 945504, 70560, -80640, -181440, 40320
OFFSET
1,5
REFERENCES
J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den höchsten Cossen weiters continuirt und profitirt werden, Augspurg, bey Johann Ulrich Schönigs, 1631.
EXAMPLE
1,
-1, 1,
1, -3, 2,
3, 3, -12, 6,
-2, 30, 8, -60, 24,
-240, 240, 240, 0, -360, 120,
-3900, -540, 4800, 1800, -360, -2520, 720.
MAPLE
with(linalg): S := proc(n) f := (n, k) -> `if`(k>n, 0, Zeta(0, k-n, 1)-Zeta(0, k-n, k+1)); inverse(matrix(n, n, f)) end: A214435_row := n -> n!*convert(row(S(n), n), list); for n from 1 to 9 do A214435_row(n) od;
MATHEMATICA
max = 9; s = Table[ If[ k > n, 0, Zeta[k - n, 1] - Zeta[k - n, k + 1]], {n, 1, max}, {k, 1, max}] // Inverse; t[n_, k_] := n!*s[[n, k]]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)
CROSSREFS
Cf. A103438.
Sequence in context: A323467 A341097 A239959 * A215926 A007888 A188723
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 17 2012
STATUS
approved