

A219958


Integers n such that n^2 can be represented as 2p + 3q with p and q primes not necessarily distinct.


4



4, 5, 7, 8, 10, 11, 13, 15, 17, 19, 20, 22, 23, 25, 27, 28, 29, 31, 32, 35, 37, 38, 40, 41, 43, 45, 47, 49, 53, 55, 59, 61, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 82, 83, 85, 87, 89, 91, 92, 95, 97, 98, 101, 103, 105, 107, 109, 110, 112, 113, 115, 117, 118
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Zak Seidov, Table of n, a(n) for n = 1..115


EXAMPLE

4^2 = 16 = 2*5 + 3*2,
5^2 = 25 = 2*5 + 3*5,
7^2 = 49 = 2*5 + 3*13.
In case of multiple solutions (as for 5^2 and 7^2) just one solution (with least p) is shown.


MATHEMATICA

mx = 50000; Select[Sqrt[Union[Reap[Do[p = Prime[k]; Do[ Sow[ 2 Prime[i] + 3 p], {i, PrimePi[(mx  3 p)/2]}], {k, PrimePi[(mx  4)/3]}]][[2, 1]]]], IntegerQ]; (*for first 115 terms *)


CROSSREFS

Cf. A079026, A219955, A219956, A219957.
Sequence in context: A231507 A097482 A191984 * A288753 A202186 A247467
Adjacent sequences: A219955 A219956 A219957 * A219959 A219960 A219961


KEYWORD

nonn


AUTHOR

Zak Seidov, Dec 02 2012


STATUS

approved



