login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079026
Numbers that can be represented as 2*p + 3*q, where p and q are prime.
8
10, 12, 13, 15, 16, 19, 20, 21, 23, 25, 27, 28, 29, 31, 32, 35, 37, 39, 40, 41, 43, 44, 45, 47, 49, 52, 53, 55, 57, 59, 61, 63, 64, 65, 67, 68, 71, 73, 75, 77, 79, 80, 83, 85, 88, 89, 91, 92, 93, 95, 97, 99, 100, 101, 103, 107, 109, 112, 113, 115, 117, 119, 121, 124, 125, 127
OFFSET
1,1
COMMENTS
The primes p and q may be the same.
FORMULA
a(n) = 2*p + 3*q, for some primes p and q.
a(n) > 3n + O(n/log n). - Charles R Greathouse IV, Dec 04 2012
EXAMPLE
13 = 2*2 + 3*3, with p = 2 and q = 3.
MATHEMATICA
mx = 130; Union@ Flatten@ Table[ 2Prime[i] + 3Prime[j], {i, PrimePi[mx/2]}, {j, PrimePi[(mx - 2Prime[i])/3]}] (* Robert G. Wilson v, Dec 12 2012 *)
PROG
(PARI) for(i=1, 200, for(j=1, i/2, k=floor((i-2*j)/3); if(i-2*j-3*k, if(isprime(j), if(isprime(k), print(i); break, )))))
(PARI) list(lim)=my(v=vectorsmall(lim\1), u=List()); forprime(p=2, lim\2, forprime(q=2, (lim-2*p)\3, v[2*p+3*q]=1)); for(i=1, #v, if(v[i], listput(u, i))); Vec(u) \\ Charles R Greathouse IV, Dec 03 2012
CROSSREFS
Sequence in context: A124404 A031288 A127957 * A219956 A331276 A230597
KEYWORD
easy,nonn
AUTHOR
Randy L. Ekl, Feb 01 2003
EXTENSIONS
Missing term, 100 (equal to 2 * 47 + 3 * 2), added by Zak Seidov, Dec 02 2012
STATUS
approved