|
|
A097482
|
|
a(1) = 1, a(2) = 1, a(n) = floor(sqrt(a(n-2)*a(n-1))) + 3 for n > 2.
|
|
0
|
|
|
1, 1, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Lim_{n->inf} a(n)/n = 1.5 (if a(1) and a(2) are set to other nonnegative numbers the limit is still 1.5). This limit is a step function of the added constant (3 -> 1.5 in this case) whose values at positive integers are 1, 1, 1.5, 2, 3, 3.5, 4, 5, 5.5, etc.
|
|
LINKS
|
Table of n, a(n) for n=1..67.
|
|
MAPLE
|
lincom:=proc(a, b, n) local i, j, s, m; s:={}; for i from 0 to n do for j from 0 to n do m:=a*i+b^j; if m<=n then s:={op(s), m} fi od; od; lprint(sort([op(s)])); end: lincom(3, 5, 100); # Zerinvary Lajos, Feb 24 2007
|
|
PROG
|
(MAGMA) [n le 2 select 1 else Floor(Sqrt(Self(n-2)*Self(n-1))) + 3: n in [1..100]]; // Vincenzo Librandi, Aug 17 2017
|
|
CROSSREFS
|
Sequence in context: A174047 A285085 A231507 * A191984 A219958 A288753
Adjacent sequences: A097479 A097480 A097481 * A097483 A097484 A097485
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gerald McGarvey, Sep 19 2004
|
|
STATUS
|
approved
|
|
|
|