login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219953
a(1) = 1; for n > 1, a(n) = smallest integer > a(n-1) such that a(n)*a(i)+1 is semiprime for all 1 <= i <= n-1.
1
1, 3, 8, 38, 86, 318, 504, 3600, 8132, 83160, 116850, 202272, 399126, 6190086, 8756916, 25253676, 309709400, 1112878446, 1478724036, 11062089360, 97331025386
OFFSET
1,2
COMMENTS
This is to A034881 as semiprimes A001358 are to primes A000040.
a(20) > 6*10^9. - Giovanni Resta, Jul 26 2015
EXAMPLE
a(1) = 1 by definition.
a(2) = 3: 3 > 1, and 1*3 + 1 = 4 = 2^2 is semiprime.
a(3) = 8: 8 > 3, and 1*8 + 1 = 9 = 3^2 is semiprime, and 3*8 + 1 = 25 = 5^2 is semiprime.
a(4) = 38: 38 > 8, and 1*38 + 1 = 39 = 3*13 is semiprime, and 3*38 + 1 = 115 = 5*23 is semiprime, and 8*38 + 1 = 305 = 5*61 is semiprime.
From Michel Marcus, Jul 26 2015: (Start)
The resulting semiprimes are:
4;
9, 25;
39, 115, 305;
87, 259, 689, 3269;
319, 955, 2545, 12085, 27349;
...
(End)
MAPLE
A219953 := proc(n)
option remember;
if n= 1 then
1;
else
for a from procname(n-1)+1 do
issp := true ;
for i from 1 to n-1 do
if numtheory[bigomega]( a*procname(n-i)+1) = 2 then
;
else
issp := false;
break ;
end if;
end do:
if issp then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Dec 15 2012
MATHEMATICA
a = {1}; Do[k = a[[n - 1]] + 1; While[! AllTrue[(k a[[n - #]] + 1) & /@ Range@ (n - 1), Total[Last /@ FactorInteger@ #] == 2 &], k++]; AppendTo[a, k], {n, 2, 13}]; a (* Michael De Vlieger, Jul 26 2015, Version 10 *)
PROG
(PARI) ok(v, n, k) = {v[n] = k; for (j=1, n-1, if (bigomega(1+v[n]*v[j]) != 2, return (0)); ); return (1); }
lista(nn) = {print1(k=1, ", "); v = [k]; for (n=2, nn, k = v[n-1]+1; v = concat(v, k); while (! ok(v, n, k), k++); v[n] = k; print1(k, ", "); ); } \\ Michel Marcus, Jul 26 2015
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jonathan Vos Post, Dec 01 2012
EXTENSIONS
a(14)-a(17) from Luke March, Jul 26 2015
a(18)-a(19) from Giovanni Resta, Jul 26 2015
a(20)-a(21) from Tyler Busby, Jan 31 2023
STATUS
approved