OFFSET
1,6
COMMENTS
lim inf a(n) >= 2 by Størmer's theorem. Is lim a(n) = infinity? It would be very surprising if this were false, since then there is some k such that n and n+k are both 5-smooth for infinitely many n. - Charles R Greathouse IV, Nov 28 2012
A085152 gives all n's for which a(n) = 1. Thue-Siegel-Roth theorem gives lim a(n) = infinity. With the aid of lower bounds for linear forms in logarithms, Tijdeman showed that a(n+1)-a(n) > a(n)/(log a(n))^C for some effectively computable constant C. - Tomohiro Yamada, Apr 15 2017
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000 (First 1000 terms from Zak Seidov)
Carl Størmer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications, Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I (2), 48 pp.
Robert Tijdeman, On integers with many small prime factors, Compos. Math. 26 (1973), 319-330.
MATHEMATICA
Differences@ Union@ Flatten@ Table[2^i * 3^j * 5^k, {i, 0, Log2[#]}, {j, 0, Log[3, #/(2^i)]}, {k, 0, Log[5, #/(2^i*3^j)] } ] &[1000] (* Michael De Vlieger, Mar 16 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 28 2012
STATUS
approved