login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219797
Number of nX3 arrays of the minimum value of corresponding elements and their horizontal, vertical, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 nX3 array
1
10, 10, 71, 255, 958, 3227, 10448, 33171, 104257, 321192, 959643, 2767836, 7715074, 20859416, 54913599, 141165961, 355043898, 874744299, 2113163842, 5009479264, 11662623744, 26685113308, 60050975462, 132996270802, 290066663758
OFFSET
1,1
COMMENTS
Column 3 of A219802
LINKS
FORMULA
Empirical: a(n) = (1/8841761993739701954543616000000)*n^29 - (1/60977668922342772100300800000)*n^28 + (1/764131189503042256896000000)*n^27 - (1/254710396501014085632000000)*n^26 - (89/10636258315426961817600000)*n^25 + (13033/14890761641597746544640000)*n^24 - (329653/8361122846886435225600000)*n^23 + (15731/561814578644543078400000)*n^22 + (1147/10176845001523200000)*n^21 - (428870437/58856765381809274880000)*n^20 + (96610883627/462446013714215731200000)*n^19 + (183570887/770926910216601600000)*n^18 - (12249530314366273/46512333274098224332800000)*n^17 + (232584426225439/21888156834869752627200)*n^16 - (24849998333157089/130286647826605670400000)*n^15 - (798271886098853/130286647826605670400000)*n^14 + (92782617073513847/1106330176349798400000)*n^13 - (1566383433261946709/774431123444858880000)*n^12 + (4471826683827896766467/210680466991703654400000)*n^11 - (9718227906795689456303/1158742568454370099200000)*n^10 - (204727186187491063219117/79863209605251072000000)*n^9 + (25933420961680284963641/887368995613900800000)*n^8 - (208927642534743574258367/2715547976773632000000)*n^7 - (247616287429857603924539/230163966692352000000)*n^6 + (22697987799868903204829897/2402505640562227200000)*n^5 - (6387246119388937181778481/2042129794477893120000)*n^4 - (6005949290268904522537/20091792547008000)*n^3 + (5220071206553058221/3439304668800)*n^2 - (391261681814226941/155272637520)*n + 338953 for n>16
EXAMPLE
Some solutions for n=3
..3..0..0....2..1..1....0..0..0....1..0..0....3..0..0....2..2..2....1..0..0
..3..0..0....2..0..0....0..0..0....1..0..0....3..0..0....2..2..2....1..0..0
..3..0..0....2..0..0....0..0..0....1..1..1....3..2..2....2..2..2....2..2..3
CROSSREFS
Sequence in context: A243126 A377189 A269921 * A377215 A255744 A165831
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 28 2012
STATUS
approved