OFFSET
1,2
COMMENTS
Equivalently, numbers of the form m*(17*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of h*(h+2)/17.
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
G.f.: x^2*(15+4*x+15*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (34*n*(n-1)+13*(-1)^n*(2*n-1)+5)/8 + 1.
Sum_{n>=2} 1/a(n) = 17/4 - cot(2*Pi/17)*Pi/2. - Amiram Eldar, Mar 15 2022
MAPLE
A219394:=proc(q)
local n;
for n from 1 to q do if type(sqrt(17*n+1), integer) then print(n);
fi; od; end:
A219394(1000); # Paolo P. Lava, Feb 19 2013
MATHEMATICA
Select[Range[0, 9000], IntegerQ[Sqrt[17 # + 1]] &]
CoefficientList[Series[x (15 + 4 x + 15 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 15, 19, 64, 72}, 50] (* Harvey P. Dale, May 01 2017 *)
PROG
(Magma) [n: n in [0..9000] | IsSquare(17*n+1)];
(Magma) I:=[0, 15, 19, 64, 72]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 03 2012
STATUS
approved