login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219392 Numbers k such that 22*k+1 is a square. 3
0, 20, 24, 84, 92, 192, 204, 344, 360, 540, 560, 780, 804, 1064, 1092, 1392, 1424, 1764, 1800, 2180, 2220, 2640, 2684, 3144, 3192, 3692, 3744, 4284, 4340, 4920, 4980, 5600, 5664, 6324, 6392, 7092, 7164, 7904, 7980, 8760, 8840, 9660, 9744, 10604, 10692 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, numbers of the form m*(22*m+2), where m = 0,-1,1,-2,2,-3,3,...

Also, integer values of 2*h*(h+1)/11.

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

G.f.: 4*x^2*(5 + x + 5*x^2)/((1 + x)^2*(1 - x)^3).

a(n) = a(-n+1) = (22*n*(n-1) + 9*(-1)^n*(2*n - 1) + 1)/4 + 2.

MAPLE

A219392:=proc(q)

local n;

for n from 1 to q do if type(sqrt(22*n+1), integer) then print(n);

fi; od; end:

A219392(1000); # Paolo P. Lava, Feb 19 2013

MATHEMATICA

Select[Range[0, 11000], IntegerQ[Sqrt[22 # + 1]] &]

CoefficientList[Series[4 x (5 + x + 5 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)

PROG

(MAGMA) [n: n in [0..11000] | IsSquare(22*n+1)];

(MAGMA) I:=[0, 20, 24, 84, 92]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013

CROSSREFS

Cf. similar sequences listed in A219257.

Sequence in context: A044996 A263016 A107302 * A193572 A167323 A112819

Adjacent sequences:  A219389 A219390 A219391 * A219393 A219394 A219395

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Nov 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 11:17 EDT 2021. Contains 346273 sequences. (Running on oeis4.)