OFFSET
2,1
COMMENTS
Trivially all one-digit matrices are solutions, which is why 'greater than n' is specified. Two-digit matrices can never be a solution, so entries are actually greater than n^2. Most terms are three-digit solutions (less than n^3). Known exceptions are 15 digits (base 2), 7 digits (base 3), and 4 digits (bases 6, 798, 1182).
Up to base 1200, coincident terms are 28, 684, 3843, 8190, 47664, 80199, 351819, 323505, 5879259, 601524, 17159660, 20777715, respectively for base pairs (4,5), (22,25), (40,43), (81,86), (94,97), (112,115), (184,187), (276,386), (472,475), (738,749), (1061,1066), (1131,1136).
LINKS
Hans Havermann, Table of n, a(n) for n = 2..1200
Hans Havermann, log plot to base 1200
Eric W. Weisstein, MathWorld: Circulant Matrix
EXAMPLE
MATHEMATICA
dcm[n_, b_] := (l = IntegerDigits[n, b]; Det[NestList[RotateRight, l, Length[l]-1]]); Table[i=b; While[dcm[i, b] != i, i++]; i, {b, 2, 43}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hans Havermann, Nov 18 2012
STATUS
approved