login
A219357
a(n) = smallest number greater than n, equal to the determinant of the circulant matrix formed by its base-n digits.
1
17298, 1352, 28, 28, 320, 81, 133, 104, 247, 126, 1273, 252, 793, 473, 520, 980, 832, 513, 468, 5792, 684, 1738, 2511, 684, 1520, 14711, 7588, 938, 3857, 2275, 4680, 13392, 5184, 1648, 10535, 1820, 9143, 8473, 3843, 21880, 11609, 3843
OFFSET
2,1
COMMENTS
Trivially all one-digit matrices are solutions, which is why 'greater than n' is specified. Two-digit matrices can never be a solution, so entries are actually greater than n^2. Most terms are three-digit solutions (less than n^3). Known exceptions are 15 digits (base 2), 7 digits (base 3), and 4 digits (bases 6, 798, 1182).
Up to base 1200, coincident terms are 28, 684, 3843, 8190, 47664, 80199, 351819, 323505, 5879259, 601524, 17159660, 20777715, respectively for base pairs (4,5), (22,25), (40,43), (81,86), (94,97), (112,115), (184,187), (276,386), (472,475), (738,749), (1061,1066), (1131,1136).
LINKS
Hans Havermann, log plot to base 1200
Eric W. Weisstein, MathWorld: Circulant Matrix
EXAMPLE
In A219325 (base 2), the smallest number greater than 2 is 17298.
In A219324 (base 10), the smallest number greater than 10 is 247.
MATHEMATICA
dcm[n_, b_] := (l = IntegerDigits[n, b]; Det[NestList[RotateRight, l, Length[l]-1]]); Table[i=b; While[dcm[i, b] != i, i++]; i, {b, 2, 43}]
CROSSREFS
Cf. A219324 (base 10), A219325 (base 2).
Sequence in context: A228379 A230164 A001381 * A219325 A255780 A023942
KEYWORD
nonn,base
AUTHOR
Hans Havermann, Nov 18 2012
STATUS
approved