login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219032
Number of distinct squares as subwords of decimal representation of n-th square.
3
1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 3, 2, 3, 4, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 3, 4, 4, 2, 4, 3, 4, 4, 2, 4, 4, 4, 5, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 5, 4, 4, 3, 2, 2, 2, 4, 4, 2, 3, 2, 3, 6, 4, 3, 2, 2, 3, 1, 2, 3, 3, 5, 2, 2, 2, 2, 3
OFFSET
0,5
COMMENTS
a(n) is the number of squares in n-th row of triangle A219031.
LINKS
FORMULA
a(n) = Sum_{k=0..A120004(n^2)} A010052(A219031(n,k)).
EXAMPLE
. n row n in A219031
. -----------------------------
. 20 [0, 4, 40, 400] a(20) = #{0, 4, 400} = 3;
. 21 [1, 4, 41, 44, 441] a(21) = #{1, 4, 441} = 3;
. 22 [4, 8, 48, 84, 484] a(22) = #{4, 484} = 2;
. 23 [2, 5, 9, 29, 52, 529] a(23) = #{9, 529} = 2;
. 24 [5, 6, 7, 57, 76, 576] a(24) = #{576} = 1;
. 25 [2, 5, 6, 25, 62, 625] a(25) = #{25, 625} = 2.
PROG
(Haskell)
a219032 = sum . map a010052 . a219031_row
(Python)
from sympy import integer_nthroot
def A219032(n):
s = str(n*n)
m = len(s)
return len(set(filter(lambda x: integer_nthroot(x, 2)[1], (int(s[i:j]) for i in range(m) for j in range(i+1, m+1))))) # Chai Wah Wu, Oct 19 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Nov 10 2012
STATUS
approved