Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Oct 20 2021 00:31:45
%S 1,1,1,1,2,1,1,3,2,2,3,2,3,4,3,2,2,2,2,3,3,3,2,2,1,2,1,2,2,3,3,3,4,4,
%T 2,4,3,4,4,2,4,4,4,5,4,3,3,3,3,4,3,3,3,3,4,3,3,5,4,4,3,2,2,2,4,4,2,3,
%U 2,3,6,4,3,2,2,3,1,2,3,3,5,2,2,2,2,3
%N Number of distinct squares as subwords of decimal representation of n-th square.
%C a(n) is the number of squares in n-th row of triangle A219031.
%H Reinhard Zumkeller, <a href="/A219032/b219032.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = Sum_{k=0..A120004(n^2)} A010052(A219031(n,k)).
%e . n row n in A219031
%e . -----------------------------
%e . 20 [0, 4, 40, 400] a(20) = #{0, 4, 400} = 3;
%e . 21 [1, 4, 41, 44, 441] a(21) = #{1, 4, 441} = 3;
%e . 22 [4, 8, 48, 84, 484] a(22) = #{4, 484} = 2;
%e . 23 [2, 5, 9, 29, 52, 529] a(23) = #{9, 529} = 2;
%e . 24 [5, 6, 7, 57, 76, 576] a(24) = #{576} = 1;
%e . 25 [2, 5, 6, 25, 62, 625] a(25) = #{25, 625} = 2.
%o (Haskell)
%o a219032 = sum . map a010052 . a219031_row
%o (Python)
%o from sympy import integer_nthroot
%o def A219032(n):
%o s = str(n*n)
%o m = len(s)
%o return len(set(filter(lambda x: integer_nthroot(x,2)[1], (int(s[i:j]) for i in range(m) for j in range(i+1,m+1))))) # _Chai Wah Wu_, Oct 19 2021
%Y Cf. A010052, A120004, A219031.
%K nonn,base
%O 0,5
%A _Reinhard Zumkeller_, Nov 10 2012