OFFSET
0,3
COMMENTS
Equivalent to which linear combinations of (-1,-1), (-1,0), (-1,1), (0,1), (0,-1), (1,1), (1,0), (1,-1) equal (1,0).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
EXAMPLE
a(2) = 4 because we have [0,1]+[1,-1], [1,1]+[0,-1] and the y-negatives [0,-1]+[1,1], [1,-1]+[0,1].
MAPLE
a:= proc(n) option remember; `if`(n<3, n^2,
((9*n^4-9*n^3-8*n^2+4*n) *a(n-1)
+4*(n-1)*(27*n^3-84*n^2+80*n-21) *a(n-2)
+32*(3*n-1)*(n-1)*(n-2)^2 *a(n-3))/ (n*(n-1)*(n+1)*(3*n-4)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
a[n_] := a[n] = If[n<3, n^2,
((9n^4-9n^3-8n^2+4n) a[n-1] +
4(n-1)(27n^3-84n^2+80n-21) a[n-2] +
32(3n-1)(n-1)(n-2)^2 a[n-3]) /
(n(n-1)(n+1)(3n-4))];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
PROG
(Maxima)
a[0]:0$
a[1]:1$
a[2]:4$
a[n]:= ((9*n^4-9*n^3-8*n^2+4*n)*a[n-1]+4*(n-1)*(27*n^3-84*n^2+80*n-21)*a[n-2]+32*(3*n-1)*(n-1)*(n-2)^2 *a[n-3])/(n*(n-1)*(n+1)*(3*n-4))$
A218274(n):=a[n]$
makelist(A218274(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Nov 01 2012
EXTENSIONS
More terms from Joerg Arndt, Nov 02 2012
STATUS
approved