login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218274
Number of n-step paths from (0,0) to (1,0) where all diagonal, vertical and horizontal steps are allowed.
1
0, 1, 4, 27, 168, 1140, 7800, 54845, 390320, 2815344, 20494320, 150442908, 1111782672, 8264558016, 61743361680, 463306724595, 3489942222624, 26378657835816, 199991245341888, 1520403553182800, 11587257160313120, 88506896001503616, 677426230547667744
OFFSET
0,3
COMMENTS
Equivalent to which linear combinations of (-1,-1), (-1,0), (-1,1), (0,1), (0,-1), (1,1), (1,0), (1,-1) equal (1,0).
LINKS
EXAMPLE
a(2) = 4 because we have [0,1]+[1,-1], [1,1]+[0,-1] and the y-negatives [0,-1]+[1,1], [1,-1]+[0,1].
MAPLE
a:= proc(n) option remember; `if`(n<3, n^2,
((9*n^4-9*n^3-8*n^2+4*n) *a(n-1)
+4*(n-1)*(27*n^3-84*n^2+80*n-21) *a(n-2)
+32*(3*n-1)*(n-1)*(n-2)^2 *a(n-3))/ (n*(n-1)*(n+1)*(3*n-4)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
a[n_] := a[n] = If[n<3, n^2,
((9n^4-9n^3-8n^2+4n) a[n-1] +
4(n-1)(27n^3-84n^2+80n-21) a[n-2] +
32(3n-1)(n-1)(n-2)^2 a[n-3]) /
(n(n-1)(n+1)(3n-4))];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
PROG
(Maxima)
a[0]:0$
a[1]:1$
a[2]:4$
a[n]:= ((9*n^4-9*n^3-8*n^2+4*n)*a[n-1]+4*(n-1)*(27*n^3-84*n^2+80*n-21)*a[n-2]+32*(3*n-1)*(n-1)*(n-2)^2 *a[n-3])/(n*(n-1)*(n+1)*(3*n-4))$
A218274(n):=a[n]$
makelist(A218274(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
CROSSREFS
Cf. A094061.
Sequence in context: A274751 A015534 A306054 * A061693 A005974 A289718
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Nov 01 2012
EXTENSIONS
More terms from Joerg Arndt, Nov 02 2012
STATUS
approved