login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218277 Convolution of level 3 of the divisor function. 3
0, 0, 0, 1, 3, 4, 10, 15, 24, 33, 45, 65, 77, 102, 143, 155, 180, 268, 255, 315, 434, 435, 462, 695, 593, 735, 960, 918, 945, 1437, 1160, 1395, 1825, 1692, 1668, 2549, 1995, 2385, 3073, 2775, 2730, 4190, 3157, 3747, 4739, 4290, 4140, 6355, 4686, 5523, 7044 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Named W3(n) by S. Alaca and K. S. Williams.

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

E. Royer, Evaluating convolutions of divisor sums with quasimodular forms, International Journal of Number Theory 3, 2 (2007), Pages 231-261.

FORMULA

W3(n) = Sum{m<3n} sigma(m)*sigma(n-3*m).

W3(n) = sigma3(n)/24 - n*sigma(n)/12 + sigma(n)/24 + 3*sigma3(n/3)/8 - n*sigma(n/3)/4 + sigma(n/3)/24.

MAPLE

f:= n -> add(numtheory:-sigma(m)*numtheory:-sigma(n-3*m), m=1..floor((n-1)/3)):

map(f, [$1..50]); # Robert Israel, Jun 28 2018

MATHEMATICA

a[n_] := Sum[DivisorSigma[1, m] DivisorSigma[1, n-3m], {m, 1, (n-1)/3}];

Array[a, 50] (* Jean-Fran├žois Alcover, Sep 19 2018 *)

PROG

(PARI) W3(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/3), sigma(m)*sigma(i-3*m)); print1(s , ", "); ); }

(PARI) W3(n) = {for (i=1, n, v = sigma(i, 3)/24 - i*sigma(i)/12 + sigma(i)/24; if (i%3 == 0, v += 3*sigma(i/3, 3)/8 - i*sigma(i/3)/4 + sigma(i/3)/24); print1(v , ", "); ); }

CROSSREFS

Cf. A000385, A218276, A218278.

Sequence in context: A048155 A242342 A204292 * A103080 A055720 A054184

Adjacent sequences:  A218274 A218275 A218276 * A218278 A218279 A218280

KEYWORD

nonn

AUTHOR

Michel Marcus, Oct 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 29 08:26 EST 2020. Contains 332355 sequences. (Running on oeis4.)