This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218216 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^4 * x^k*(1-x)^(n-k). 0
 1, 1, 1, 15, 65, 175, 1155, 7229, 31081, 162755, 1018195, 5448645, 28879019, 171229541, 991796825, 5540516759, 32232757569, 190448140543, 1105001828111, 6463178610505, 38380301015595, 227218808375165, 1344777832158545, 8022879439995215, 47988823484272835 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS EXAMPLE G.f.: A(x) = 1 + x + x^2 + 15*x^3 + 65*x^4 + 175*x^5 + 1155*x^6 + 7229*x^7 +... where A(x) = 1 + x*((1-x) + x) + x^2*((1-x)^2 + 2^4*x*(1-x) + x^2) + x^3*((1-x)^3 + 3^4*x*(1-x)^2 + 3^4*x^2*(1-x) + x^3) + x^4*((1-x)^4 + 4^4*x*(1-x)^3 + 6^4*x^2*(1-x)^2 + 4^4*x^3*(1-x) + x^4) + x^5*((1-x)^5 + 5^4*x*(1-x)^4 + 10^4*x^2*(1-x)^3 + 10^4*x^3*(1-x)^2 + 5^4*x^4*(1-x) + x^5) +... PROG (PARI) {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^4*x^k*(1-x)^(m-k) + x*O(x^n))), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A217615, A217421. Sequence in context: A147857 A147858 A005917 * A027455 A152729 A055268 Adjacent sequences:  A218213 A218214 A218215 * A218217 A218218 A218219 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 06:08 EDT 2019. Contains 328046 sequences. (Running on oeis4.)