

A218217


a(n) = (x(n+1)  x(n))^2 + (y(n+1)  y(n))^2, where x(n)^2 + y(n)^2 = A055025(n) is norm of Gaussian prime and x(n) >= y(n) >= 0.


0



1, 2, 4, 2, 2, 2, 10, 20, 4, 10, 8, 4, 2, 10, 4, 20, 58, 16, 10, 2, 20, 58, 8, 40, 2, 40, 20, 10, 90, 2, 20, 10, 116, 2, 8, 20, 10, 68, 50, 10, 20, 26, 4, 146, 8, 34, 10, 40, 34, 40, 130, 104, 20, 2, 160, 50, 10, 180, 2, 180, 90, 58, 40, 130, 16, 116, 194, 50
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

We walk through the Gaussian primes in the first octant of the Gaussian plane along increasing norm: 1+i, 2+i, 3, 3+2i, 4+i, 5+2i, 6+i, 5+4i, 7, 7+2i etc. The sequence lists the squared distance between consecutive Gaussian primes along this walk.


LINKS

Table of n, a(n) for n=1..68.


EXAMPLE

The squared distance between 5+4i and 6+i is (65)^2+(41)^2 =10 = a(7).


MATHEMATICA

nMx = 1000; modLst = {2}; Do[p = Prime[n]; If[Mod[p, 4] == 1, AppendTo[modLst, p], If[p^2 < nMx, AppendTo[modLst, p^2]]], {n, 2, PrimePi[nMx]}]; modLst = Union[modLst]; last = {1, 1}; Table[pr = PowersRepresentations[n, 2, 2][[1]]; dist = SquaredEuclideanDistance[last, pr]; last = pr; dist, {n, Rest[modLst]}] (* T. D. Noe, Oct 29 2012 *)


CROSSREFS

Cf. A055025.
Sequence in context: A179686 A286479 A013604 * A218279 A183193 A331470
Adjacent sequences: A218214 A218215 A218216 * A218218 A218219 A218220


KEYWORD

nonn


AUTHOR

Thomas Ordowski, Oct 23 2012


STATUS

approved



