The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218173 Expansion of f(x^7, x^17) - x^2 * f(x, x^23) in powers of x where f(,) is Ramanujan's two-variable theta function. 1
 1, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^5, b = x^3. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions Eric Weisstein's World of Mathematics, Quintuple Product Identity FORMULA Expansion of f(x, x^7) * chi(-x) in powers of x where f(,) is Ramanujan's two-variable theta function and chi() is a Ramanujan theta function. G.f.: Sum_{k in Z} x^(12*k^2 + 5*k) - x^(12*k^2 + 11*k + 2). a(n) = -A010815(2*n + 1). EXAMPLE 1 - x^2 - x^3 + x^7 + x^17 - x^25 - x^28 + x^38 + x^58 - x^72 - x^77 + x^93 + ... q^25 - q^121 - q^169 + q^361 + q^841 - q^1225 - q^1369 + q^1849 + q^2809 + ... MATHEMATICA a[ n_] := If[ n < 0, 0, If[ OddQ[ DivisorSigma[ 0, 48 n + 25]], JacobiSymbol[ 6, Sqrt[48 n + 25]], 0]]; (* Michael Somos, Nov 09 2014 *) a[ n_] := SeriesCoefficient[ (QPochhammer[ -q] - QPochhammer[ q]) / 2, {q, 0, 2 n + 1}]; (* Michael Somos, Nov 09 2014 *) a[ n_] := SeriesCoefficient[ QPochhammer[ q] (QPochhammer[ q^2]^3 / QPochhammer[ q]^2/ QPochhammer[ q^4] - 1) / 2, {q, 0, 2 n + 1}]; (* Michael Somos, Nov 09 2014 *) PROG (PARI) {a(n) = local(m); if( issquare( 48*n + 25, &m), kronecker( 6, m), 0)}; (PARI) {a(n) = local(m); if( n<0, 0, m = 2*n + 1; - polcoeff( eta( x + x * O(x^m)), m))}; CROSSREFS Cf. A010815, A069911. Sequence in context: A145377 A246260 A275973 * A068426 A267006 A280816 Adjacent sequences:  A218170 A218171 A218172 * A218174 A218175 A218176 KEYWORD sign AUTHOR Michael Somos, Oct 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)