The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218171 Expansion of f(x^11, x^13) - x * f(x^5, x^19) in powers of x where f(, ) is Ramanujan's general theta function. 4
 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^7, b = x. - Michael Somos, Nov 09 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions Eric Weisstein's World of Mathematics, Quintuple Product Identity FORMULA Expansion of f(x^3, x^5) * chi(-x) in powers of x where f(, ) is Ramanujan's general theta function and chi() is a Ramanujan theta function. G.f.: Sum_{k in Z} x^(12*k^2 + k) - x^(12*k^2 + 7*k + 1). a(n) = A010815(2*n) for all n in Z. EXAMPLE G.f. = 1 - x - x^6 + x^11 + x^13 - x^20 - x^35 + x^46 + x^50 - x^63 - x^88 + ... G.f. = q - q^49 - q^289 + q^529 + q^625 - q^961 - q^1681 + q^2209 + q^2401 + ... MATHEMATICA a[ n_] := If[ n < 0, 0, If[ OddQ[ DivisorSigma[ 0, 48 n + 1]], JacobiSymbol[ 6, Sqrt[48 n + 1]], 0]]; (* Michael Somos, Nov 09 2014 *) a[ n_] := SeriesCoefficient[ (QPochhammer[ -q] + QPochhammer[ q]) / 2, {q, 0, 2 n}]; (* Michael Somos, Nov 09 2014 *) a[ n_] := SeriesCoefficient[ QPochhammer[ q] (QPochhammer[ q^2]^3 / QPochhammer[ q]^2/ QPochhammer[ q^4] + 1) / 2, {q, 0, 2 n}]; (* Michael Somos, Nov 09 2014 *) PROG (PARI) {a(n) = my(m); if( issquare(48*n + 1, &m), kronecker(6, m), 0)}; (PARI) {a(n) = my(m); if( n<0, 0, m = 2*n; polcoeff( eta(x + x * O(x^m)), m))}; CROSSREFS Cf. A010815, A115671. Sequence in context: A113052 A369967 A256432 * A362130 A361018 A232714 Adjacent sequences: A218168 A218169 A218170 * A218172 A218173 A218174 KEYWORD sign AUTHOR Michael Somos, Oct 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 08:04 EDT 2024. Contains 373629 sequences. (Running on oeis4.)