OFFSET
0,1
COMMENTS
a(n) = a(0)*Product_{i = 1..k} r(i)^C(n,i), with C(n,i) = 0 for all i > n. This is a special case of the geometric-geometric sequence having finite ratios, that is, k consecutive rows of ratios, whose first terms are r(1), r(2), r(3), ..., r(k), the last row (k-th row) being of a constant ratio, with k = 2, a(0) = 2, r(1) = 3, r(2) = 5.
FORMULA
a(n) = a(n-1)*3*5^(n-1), a(0) = 2.
EXAMPLE
a(3) = 6750 because a(3) = 2*3^3*5^(3*2/2) = 2*3^3*5^3 = 2*27*125 = 6750.
MATHEMATICA
RecurrenceTable[{a[0]==2, a[n]==a[n-1]3*5^(n-1)}, a, {n, 20}] (* Harvey P. Dale, Jul 30 2019 *)
PROG
(Maxima) A218151(n):=2*3^n*5^(n*(n-1)/2)$
makelist(A218151(n), n, 0, 11); /* Martin Ettl, Nov 03 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Mokhtar Mohamed, Oct 23 2012
STATUS
approved