login
A177861
Product of the quadratic nonresidues of prime(n).
2
1, 2, 6, 90, 6720, 36960, 11642400, 283046400, 2412984420000, 1140422816332800, 1226781977195174400, 1863152400854384640000, 5988092802221559085056000, 112886540292742916603904000, 158983195607776600998537600000000
OFFSET
1,2
COMMENTS
a(n) == (-1)^((p-1)/2) (mod p), if p = prime(n) is odd.
REFERENCES
Carl-Erik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.-behandl. 11 (1971) 389-398.
FORMULA
a(n) = (p-1)!/A177860(n), where p = prime(n).
EXAMPLE
The quadratic nonresidues of prime(4) = 7 are 3, 5, and 6, so a(4) = 3*5*6 = 90.
MATHEMATICA
Table[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], -1]]], {n, 1, 16}]
CROSSREFS
A125615 Sum of the quadratic nonresidues of prime(n), A177860 Product of the quadratic residues of prime(n), A177863 Product of the quadratic nonresidues of prime(n) modulo prime(n).
Sequence in context: A128265 A002432 A087277 * A218151 A343021 A007188
KEYWORD
easy,nonn
AUTHOR
Jonathan Sondow, May 14 2010
STATUS
approved