|
|
A218121
|
|
Numerator of c(n) defined by c(1)=1, c(2)=5/2 and for n>=3, c(n) is the minimal rational number >= c(n-1) such that there are no primes in the interval (Prime(n)/c(n), Prime(n+1)/c(n)).
|
|
2
|
|
|
1, 5, 5, 11, 11, 17, 17, 17, 29, 29, 29, 41, 41, 41, 41, 41, 41, 67, 67, 67, 67, 83, 83, 83, 83, 83, 83, 109, 109, 127, 127, 127, 127, 149, 149, 149, 149, 149, 149, 149, 181, 181, 181, 181, 181, 181, 181, 181, 229, 229, 229, 229, 251, 251, 251, 251, 251, 251, 251, 251
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The sequence c(n) begins 1, 5/2, 5/2, 11/2, 11/2, 17/3, ...
Its terms > 1 are ratios of primes.
|
|
LINKS
|
|
|
FORMULA
|
For n>=3, if interval (Prime(n)/c(n-1), Prime(n+1)/c(n-1)) is free from primes, then c(n)=c(n-1); otherwise, c(n)=Prime(n+1)/Prime(k), where k<=n is the maximal, such that a) Prime(n+1)/Prime(k)>c(n-1) and b) the open interval (Prime(n)*Prime(k)/Prime(n+1), Prime(k)) does not contain any prime.
Note that such k exists, since, for k=1, the interval (2*Prime(n)/Prime(n+1),2) is free from primes.
|
|
EXAMPLE
|
Intervals (2/1,3/1),(3/(5/2),5/(5/2)) are free from primes. By the condition, c(3) >= c(2) = 5/2. Since also (5/(5/2),7/(5/2)) contains no prime, then c(3)=5/2. Further, c(4) should be chosen minimal>=5/2 such that the interval (7/c(4),11/c(4)) does not contain 2 and 3 (it is clear that it contains no prime>=5). It is easy to see that the minimal c(4)=11/2, etc.
|
|
MAPLE
|
ispfree := proc(a, b)
local alow ;
alow := floor(a);
if nextprime(alow) < b then
false;
else
true;
end if;
end proc:
A218121c := proc(n)
option remember;
local k ;
if n = 1 then
return 1;
elif n = 2 then
return 5/2 ;
else
if ispfree(ithprime(n)/procname(n-1), ithprime(n+1)/procname(n-1)) then
return procname(n-1) ;
end if ;
for k from n by -1 do
if ispfree( ithprime(n)*ithprime(k)/ithprime(n+1), ithprime(k) )
and ithprime(n+1)/ithprime(k) > procname(n-1) then
return ithprime(n+1)/ithprime(k) ;
end if;
end do:
end if;
end proc:
numer(A218121c(n)) ;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|