|
|
A218123
|
|
Denominators of terms of the sequence {c(n)} defined in A218121.
|
|
2
|
|
|
1, 2, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 43, 43, 43, 43, 43, 47, 47
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
It is easy to see that every prime is in the sequence.
|
|
LINKS
|
Table of n, a(n) for n=1..80.
|
|
MAPLE
|
ispfree := proc(a, b)
local alow ;
alow := floor(a);
if nextprime(alow) < b then
false;
else
true;
end if;
end proc:
A218121c := proc(n)
option remember;
local k ;
if n = 1 then
return 1;
elif n = 2 then
return 5/2 ;
else
if ispfree(ithprime(n)/procname(n-1), ithprime(n+1)/procname(n-1)) then
return procname(n-1) ;
end if ;
for k from n by -1 do
if ispfree( ithprime(n)*ithprime(k)/ithprime(n+1), ithprime(k) )
and ithprime(n+1)/ithprime(k) > procname(n-1) then
return ithprime(n+1)/ithprime(k) ;
end if;
end do:
end if;
end proc:
A218123 := proc(n)
denom(A218121c(n)) ;
end proc: # R. J. Mathar, Dec 02 2012
|
|
CROSSREFS
|
Cf. A218121, A217871, A217689, A217691, A217833, A217884.
Sequence in context: A029084 A032229 A024366 * A288157 A333701 A140682
Adjacent sequences: A218120 A218121 A218122 * A218124 A218125 A218126
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Vladimir Shevelev, Oct 21 2012
|
|
STATUS
|
approved
|
|
|
|