login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217650
Numbers k such that 2*k!!! - 1 is prime.
3
2, 3, 4, 5, 11, 23, 27, 29, 36, 40, 41, 71, 89, 119, 127, 157, 163, 187, 652, 1374, 1518, 2922, 5193, 6663, 7455, 9739, 11569, 14103
OFFSET
1,1
COMMENTS
k!!! is a triple factorial, see the definition in A007661.
EXAMPLE
5 is in the sequence because 2*5!!! - 1 = 2*10 - 1 = 19 is prime.
MAPLE
A:= n -> mul(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): for p from 0 to 200 do:if type(2*A(p)-1, prime)=true then printf(`%d, `, p):else fi:od:
MATHEMATICA
lst={}; multiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*multiFactorial[n - k, k]]]; Do[If[PrimeQ[2*multiFactorial[n, 3] - 1], AppendTo[lst, n]], {n, 0, 1000}]; lst
PROG
(PARI) is(n)=ispseudoprime(2*prod(i=0, (n-2)\3, n-3*i)-1) \\ Charles R Greathouse IV, Oct 09 2012
(PFGW)
ABC2 2*$a!3-1
a: from 1 to 6000
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Michel Lagneau, Oct 09 2012
EXTENSIONS
a(20)-a(23) from Charles R Greathouse IV, Oct 09 2012
a(24)-a(25) from Jinyuan Wang, May 15 2021
a(26)-a(28) from Michael S. Branicky, Jul 25 2024
STATUS
approved