login
A217603
Consider sets of 3 consecutive primes a, b, c such that c - a = 100, then sequence gives the values of b.
2
58831, 286927, 360653, 404941, 590489, 623107, 651587, 673747, 710119, 740801, 779413, 794831, 795427, 1040311, 1107269, 1185241, 1206869, 1320437, 1392007, 1568771, 1581829, 1599803, 1601953, 1613201, 1721081, 1744927, 1942273, 1951321, 1994299, 2024063
OFFSET
1,1
EXAMPLE
a(1) = 58831 because {58789, 58831, 58889} is the first set of 3 consecutive primes a, b, c with c-a=100.
a(2) = 286927 because {286873, 286927, 286973} is the second set of 3 consecutive primes a, b, c with c-a=100.
a(1000) = 23090087 because {23090059, 23090087, 23090159} is the 1000th set of 3 consecutive primes a, b, c with c-a=100.
MATHEMATICA
s = {}; a = 2; b = 3; c = 5; Do[If[c - a == 100, AppendTo[s, b]; Print[{a, b, c}]]; a = b; b = c; c = NextPrime[c], {10^5}]; s
Select[Partition[Prime[Range[151000]], 3, 1], #[[3]]-#[[1]]==100&][[;; , 2]] (* Harvey P. Dale, Jul 22 2024 *)
PROG
(PARI) p=2; q=3; forprime(r=5, 1e6, if(r-p==100, print1(q", ")); p=q; q=r) \\ Charles R Greathouse IV, Nov 14 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 08 2012
STATUS
approved